
Utilities: File Out Tool
Help Volume
© 1998-2001 Agilent Technologies. All rights reserved.

Using the File Out Tool

The File Out tool lets you save measurement data to a file in ASCII,
Internal or Fast Binary format (see page 12). You can then reload the
file using the File In tool, or export the data file to a debugger or
spreadsheet application for post-processing.

• “Overview of File Out Tool” on page 6

• “Saving a Single Data File” on page 7

• “Saving Multiple Data Files” on page 9

• “File Out Data Formats” on page 12

• “Loading & Saving File Out Configurations” on page 12

• “Printing the File Out Window” on page 14

See Also File In Tool (see the File In Tool help volume)

“Fast Binary Data File Format” on page 16

Main System Help (see the Agilent Technologies 16700A/B-Series Logic

Analysis System help volume)

Glossary of Terms (see page 35)
2

Contents
Using the File Out Tool

1 Using the File Out Tool

Overview of File Out Tool 6

Saving a Single Data File 7

Saving Multiple Data Files 9

Automatic Sequencing 10
File Sequence Example 11
ASCII Data File Example 11

Loading & Saving File Out Configurations 12
File Out Data Formats 12

Printing the File Out Window 14

Setting the ASCII Options 15

Fast Binary Data File Format 16
DataGroup 17
DataSet 18
IntegralData 19
Label Data 25
Label Entry 27
Vertical Header 28
Abscissa Data Type (x-axis information) 29
Time Correlation Info 30
State Correlation Info 31

Connecting Tools Together 32

Help - How to Navigate Quickly 33
 3

Contents
Help - System Overview 34

Glossary

Index
4

1

Using the File Out Tool
5

Chapter 1: Using the File Out Tool
Overview of File Out Tool
Overview of File Out Tool

The following example shows a measurement configuration using both
the File In and File Out tools. Using the File Out tool allows you to save
files that can be reopened for display and post-process at a later time
using the File In tool. The sequence of events for the following
configuration is as follows.

• An analyzer (Analyzer A) is configured to trigger and capture data.

• The Pattern Filter is configured to filter out unwanted data.

• The remaining data is displayed in the Listing tool.

• The same data is saved to a file using the File Out tool.

• The File In tool reloads the saved file from the File Out tool, and displays
the data in the Waveform tool.
6

Chapter 1: Using the File Out Tool
Saving a Single Data File
Saving a Single Data File

The File Out tool saves the measurement data that is currently
available at its input to a file. New measurement data is presented to
the File Out tool for saving each time you press Run. Use the process
below to save the data file.

1. In the Workspace window, connect the File Out tool to the output of the
analyzer providing data.

2. Run the analyzer to capture data.

3. Access the File Out window by selecting the Navigate menu.

4. In the File Out window, select hard disk or flexible disk as the data file’s
destination.

5. Type the destination path, or use "Browse..." to select a directory in the file
system.

6. Select the desired Output File Format (see page 12).

7. If you choose ASCII, configure the desired ASCII Options (see page 15).

8. Select Save Data.

See Also “Saving Multiple Data Files” on page 9
7

Chapter 1: Using the File Out Tool
Saving a Single Data File
“Overview of File Out Tool” on page 6
8

Chapter 1: Using the File Out Tool
Saving Multiple Data Files
Saving Multiple Data Files

New measurement data is presented to the File Out tool each time you
press Run. Automatic File Sequencing allows you to save File Out
data at each run without pressing Save Data.

1. Set up the File Out tool as described in “Saving a Single Data File” on
page 7.

2. Select Automatic File Sequencing... (see page 10) and configure the
desired file saving sequence.

See Also “Saving a Single Data File” on page 7
9

Chapter 1: Using the File Out Tool
Automatic Sequencing
Automatic Sequencing

To control how the File Out tool will save data files, choose one of these
options in the Automatic Sequencing dialog.

No automatic data saving with every run

To save current data to the specified file, select Save Data in the File
Out tool’s main window.

Automatically save data to the same file with every run

At every run, data is automatically saved to the filename specified in
the File Out tool main window. If you do not change the name of the
file, the data in the file will be overwritten with the next run’s data. You
do not need to press Save Data for this option.

Automatically save data into a different file with every run

This selection automatically saves one file per run, for the selected
number of runs. The First Number field indicates the number of the
next run to be saved. The Last Number field sets the maximum
number of runs that are saved. As files are saved, the filename is
incremented by one. You do not need to select Save Data for this
option. See Example of a File Sequence (see page 11)

Example of a saved ASCII data file (see page 11)
10

Chapter 1: Using the File Out Tool
Automatic Sequencing
File Sequence Example

This example shows a list of generated files in a directory when the
First Number was set to 1, and the Last Number was set to 5.

Example

data_file.1
data_file.2
data_file.3
data_file.4
data_file.5

ASCII Data File Example

This example shows a saved ASCII data file:

16505_Data_Header_Begin
Frame 5:Slot B:MACHINE 1:State Number
Decimal
32
Frame 5:Slot B:MACHINE 1:count
Hex
8
16505_Data_Header_End
1 00000000
2 00000001
3 00000010
4 00000011
5 00000100
6 00000101
7 00000110
8 00000111
9 00001000
10 00001001
11 00001010
12 00001011
13 00001100
14 00001101
15 00001110
11

Chapter 1: Using the File Out Tool
Loading & Saving File Out Configurations
Loading & Saving File Out Configurations

File Out settings are saved to a configuration file along with system
settings.
See:

• Loading Configuration Files (see the Agilent Technologies 16700A/B-

Series Logic Analysis System help volume)

• Saving Configuration Files (see the Agilent Technologies 16700A/B-

Series Logic Analysis System help volume)

NOTE: The Load Configuration window can be accessed via File->Load
Configuration.
The Save Configuration window can be accessed via File->Save
Configuration.

File Out Data Formats

The File Out tool saves data in Internal, ASCII or Fast Binary format.
Data files saved with the File Out tool retain their original format when
loaded by the File In tool.

Internal The Internal format is a normalized data type used internally by the
logic analysis system. Normalized data maintains its time correlation
and alignment when used within the analyzer tools. The Internal
format is recommended when used within the analyzer because of its
fast storage and retrieval speed. Also, symbols you have created are
stored with the data.

ASCII The ASCII format (American Standard Code for Information
Interchange), is a common format for exporting data. The ASCII format
is recommended if you want to export data to external tools such as
debuggers or spreadsheets. ASCII format files require data conversion
12

Chapter 1: Using the File Out Tool
Loading & Saving File Out Configurations
and result in comparatively larger files. ASCII format is not
recommended for use within the analyzer system when storage/
retrieval speed is an issue.

Fast Binary The Fast Binary data format lets you export analyzer data for post-
processing. The Fast Binary data format saves faster than ASCII, and
can be parsed using programming tools.

NOTE: It is recommended that you save ASCII data in hexadecimal format.
Hexadecimal makes most efficient use of the ASCII 8-bit format. Binary data
storage uses an 8-bit ASCII string to represent each character, thus increasing
the file size by a factor of 8.
13

Chapter 1: Using the File Out Tool
Printing the File Out Window
Printing the File Out Window

The print window lets you print just the File Out tool window. Use this
operation if you want a hard copy or electronic record of configurations
and data currently displayed in the viewing area of the File Out
window.

NOTE: Only the currently displayed viewing area of the File Out window is printed. If
any data or configuration fields appear off the screen, scroll the desired data
or configuration fields into the window’s viewing area before printing.

1. Optional - configure the Print Options (see the Agilent Technologies

16700A/B-Series Logic Analysis System help volume) if desired.
Print Options includes print destination, file format type, filename
autoincrement, and color/b&w; pixel mapping.

2. In the File Out tool menu bar, select File, then select Print This Window.
The print output will be as configured in the Print Options in step 1.

See Also Setting Print Options (see the Agilent Technologies 16700A/B-Series

Logic Analysis System help volume)

Set Up the Printer (see the Agilent Technologies 16700A/B-Series Logic

Analysis System help volume)
14

Chapter 1: Using the File Out Tool
Setting the ASCII Options
Setting the ASCII Options

1. From the ASCII Output Options dialog, select the desired labels, then
select the right-arrow field. This places the desired labels in the Selected

Labels box.

2. Select the numeric base field and select the desired base. See note below.

3. Select either All or Partial as the Storage Range.

4. If you select Partial, choose either Samples or Time as the data unit.

5. If you select Partial, edit the Start and End value fields to set the partial
storage range.

NOTE: It is recommended that you save ASCII data in hexadecimal format.
Hexadecimal makes most efficient use of the ASCII 8-bit format. Compared to
hex, storing data in binary means each character is represented as an 8-bit
ASCII string, thus increasing the file size by a factor of 8.
15

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
Fast Binary Data File Format

These pages describe the Fast Binary File Format that you can use to
quickly export and import data for use in post-processing
environments.

To print a hard copy, select File->Print, then Current and Subtopics.

A "C" program containing parse code for the Fast Binary Data File
Format is located on your system at: /logic/demo/fastOutReader/
fast_reader.c

Data Organization The data is organized in a hierarchy of several individual objects
representing different aspects of the acquired data. The analyzer data
is basically organized by your defined ’labels’ and channels called a
LabelEntry. Multiple labels/channels from each analyzer is then
grouped into a DataSet. All the labels in a DataSet have the same
number of samples and have the same X-axis(Abscissa) values. Then
one or more DataSets are grouped into a DataGroup. These are
discussed in more detail below. The FileOut tool generates or writes
out one DataGroup object.

Object IDs There are several object types that have an object id associated with
them. Some objects are referenced more than once within the
DataGroup. Where this happens on the first occurrence of an object is
written out, and subsequent objects have only their id written out.

The Fast Binary File Format is a mixture of these binary and ascii
objects:

• “DataGroup” on page 17

• “DataSet” on page 18
16

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
• “Label Entry” on page 27

• “Label Data” on page 25

• “IntegralData” on page 19

• “Vertical Header” on page 28

• “Abscissa Data Type (x-axis information)” on page 29

• “Time Correlation Info” on page 30

• “State Correlation Info” on page 31

DataGroup

The top level object is the DataGroup. This object contains a general
header information and a list of DataSet objects:

<DataGroup> ::=
 <DataGroup Header>
 Number of DataSets => "%d\n"
 <DataSet #1>
 <DataSet #2>
 ...

DataGroup Header The DataGroup header is an object that identifies the file as a fast
binary data file. It contains the format version and the information that
describes how the DataSets are related to each other:

<DataGroup Header> ::=
 FileId => "HPLogic_Fast_Binary_Format_Data_File\n"
 FileVersion => "%d %d\n"
 Correlation Bits => "%d [%d]*\n"
 Cross Correlation id’s
 => "%d %d\n"

• FileVersion - The file version fields represent the major and minor version
numbers. These are used to identify different versions of the fast data
format. Where the format has changed will be noted with the
corresponding version numbers.

• Correlation Bits - The cross correlation id's are used when correlating
multiple DataGroups. DataGroups that are time correlatable will have the
same Time Correlation Id. In the same way, DataGroups that are state
correlatable will have the same State Correlation Id. An id of -1 indicates
cross correlation information is not available.
17

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
Bit# Description
 0 Time Correlatable
 1 State Correlatable

Time correlatable indicates that the data within all the DataSets are time
aligned. State correlatable indicates that each sample is state aligned
across all DataSets, i.e. the DataSets are sample synchronized. A
DataGroup with only one DataSet that has timing information will be both
time and state correlatable.

• Cross Correlation ID's - The cross correlation id's are used when
correlating multiple DataGroups. DataGroups that are time correlatable
will have the same Time Correlation Id. In the same way, DataGroups that
are state correlatable will have the same State Correlation Id. An id of -1
indicates cross correlation information is not available.

DataSet

The DataSet is a collection of label or channels. All of the labels in a
dataset have a common X-axis(Abscissa) information.

<DataSet> ::=
 Number of Label Entries => "%d\n"
 <Label Entry #1>
 . . .
 <Label Entry #n>
 <Abscissa Data Type>
 <Time Correlation Info>
 <State Correlation Info>
 Origin Path => "‘%s’\n"
 DataSet ID, Run ID
 => "%d %d\n"
 Begin and End Time
 => "%d %d\n"
 Start Sample
 => "%d\n"
 Last Sample
 => "%d\n"

• Origin Path - This is a string that describes the "path" that the data was
processed through, i.e. what tools were used to process this data.

• DataSet ID, Run ID - These id's are used to cross correlate and integrate
multiple data sets. The DataSet ID identifies this data set. The Run ID is an
id used to correlate with other data sets. The way it is used is that if two or
more data sets have the same Run ID, then they have the possibility of
being correlated in some way. To determine if the data sets are truly
correlated, you must examine their Time Correlation Info (see page 30)
and State Correlation Info (see page 31).
18

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
• Begin and End Time - These values show the time at which the data was
acquired, both the time when the analysis began, and the time at which the
trace ends. The time value is the number of seconds since midnight,
January 1st, 1970.

• Start Sample - This value is the first sample number in the acquisition.

• Last Sample - This value is the last sample number in the acquisition.

IntegralData

The IntegralData structure is used to represent signed and unsigned n-
bit data. n is the bit width of the label, or the width of this object when
shared among several labels. Like label data, there are several objects
of IntegralData which is determined by the first line of this object. The
objects defined so far are:

"IntegralArray<signed8>"

"IntegralArray<signed16>"

"IntegralArray<signed32>"

"IntegralArray<signed64>"

"IntegralArray<unsigned8>"

"IntegralArray<unsigned16>"

"IntegralArray<unsigned32>"

"IntegralArray<unsigned64>"

"BitPackedData"

"BitBlockData"

"BitBlock"

"PagedBitBlock"

"PagedIntegralData<type size>"

"StringData"
19

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
The above list can be broken down into four basic formats,
IntegralArray, BitPackedData, BitBlockData, and Strings. Strings are
used for textual data. The IntegralArray is used for labels that are
exactly 8, 16, 32, or 64 bits wide. The BitPackedData is used for all
other label widths. The BitBlockData is similar to BitPackedData in
that it contains the raw data for multiple labels. The difference is that
the bits associated with the label may not be consecutive or in order.

Paged objects are the same as their non-paged counter parts except
that they may contain a filename instead of data. This indicates that
the data is located in the named file instead of the current file being
read. The additional files will be formatted with a header describing
that the file is a data file, and then the actual data will follow with
exactly the same format as if it were in the original file. This is being
done because a fair number of computer systems have a 2GB file size
limit. There are situations where the original Fast Binary Data File
would be greater than 2GB, hence these paged objects.

IntegralArray<type
size> IntegralArray<type size> ::=

 Integral Data Type => "IntegralArray<type size>\n"
 Integral Data ID => "%d\n"
 (if ID has not already been processed)
 Length => "%d\n"
 StuckOne, StuckZero => "%s %s\n"
 Raw Bytes => n bytes

• Type and Size - Type is the sign-ness of the label data values, i.e. "signed"
or "unsigned". Size is the width in bits of the label.

• Length - Length is the number of samples that is associated with this label.

• StuckOne and StuckZero - StuckOne indicates which bits, if any, of the
label have a value of 1 for all of the samples. This value has the same width
as the label does, which can be larger than 32 bits, so therefore is
formatted as a string(%s). StuckZero indicates bits with a value of 0.

• Raw Bytes - A raw section of bytes that is n bytes long. n = length * size in
bytes. The block of data can be viewed as an array of size length with each
element be size bits wide. Then access the data using a zero based array
index.

BitPackedData
BitPackedData ::=
20

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
 Integral Data Type => "BitPackedData\n"
 Integral Data ID => "%d\n"
 (if ID has not already been processed)
 Start Bit, Width, Inverted
 => "%d %d %d\n"
 StuckOne, StuckZero => "%s %s\n"
 BytesPerLine, IntegralPerLine
 => "%d %d\n"
 DataBlock => &<IntegralArray&<type size>>

• Start Bit, Width, Inverted - Start Bit is starting bit position within the
bitblock for this label. Width is the number of bits used by this label.
Inverted is a flag indicated whether the data is inverted.

• StuckOne and StuckZero - StuckOne indicates which bits, if any, of the
label have a value of 1 for all of the samples. This value has the same width
as the label does, which can be larger than 32 bits, so therefore is
formatted as a string(%s). StuckZero indicates bits with a value of 0.

• BytesPerLine and IntegralPerLine - These two fields indicate the width of
the bitblock data in bytes and in terms of the base type of the
IntegralArray.

• DataBlock - DataBlock is an IntegralArray that can be shared by multiple
labels. Each label that occupies this DataBlock has a starting position and
it's width, so that each line/sample within the datablock is wide enough to
support all labels sharing this DataBlock.

BitBlockData
BitBlockData ::=
 Integral Data Type => "BitBlockData\n"
 Integral Data ID => "%d\n"
 (if ID has not already been processed)
 Extractor => <Label Extractor>
 StuckOne, StuckZero => "%s %s\n"
 DataBlock => <BitBlock> or <PagedBitBlock>

• Extractor - The Label extractor is used to map the bits of a label definition
to specific bits within a bitblock.

• StuckOne and StuckZero - StuckOne indicates which bits, if any, of the
label have a value of 1 for all of the samples. This value has the same width
as the label does, which can be larger than 32 bits, so therefore is
formatted as a string(%s). StuckZero indicates bits with a value of 0.

• DataBlock - DataBlock is either a <BitBlock> or a <PagedBitBlock> that is
shared by multiple labels. For each label that uses this bitblock, a label
extractor is used to access the bitblock to retrieve the appropriate data
associated with that particular label.

BitBlock
BitBlock ::=
 Integral Data Type => "BitBlock\n"
21

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
 reserved => "%d\n%d\n"
 Integral Data ID => "%d\n"
 (if ID has not already been processed)
 Length, BytesPerLine => "%u %u\n"
 Raw Bytes => n bytes

• Integral Data ID - This is the Objects id. An id value of 0 indicated that
there is no data associated with this object. If the ID has not been seen
earlier in the file, the object information follows. If the id has been seen,
then the next object follows.

• Length and BytesPerLine - Length is the number of samples (rows) of
data. BytesPerLine is the number of bytes is each sample or row.

• Raw Bytes - A raw section of bytes that is n bytes long. n = length *
bytesPerLine. The block of data can be viewed as an array of samples, with
each sample being bytesPerLine wide. This array is then accessed using a
zero based array index.

PagedBitBlock
PagedBitBlock ::=
 Integral Data Type => "PagedBitBlock\n"
 reserved => "%d\n%d\n"
 Integral Data ID => "%d\n"
 (if ID has not already been processed)
 UseFile, Filename => "%d ‘%s‘\n"
 reserved => "%d %d\n"
 Length, BytesPerLine => "%u %u\n"
 Raw Bytes => n bytes

• Integral Data ID - This is the Objects id. An id value of 0 indicated that
there is no data associated with this object. If the id has not been seen
earlier in the file, the object information follows. If the id has been seen,
then the next object follows.

• UseFile and Filename - UseFile is a boolean that indicates whether to use a
file or not. The filename is a full path name. A value of 0 means that the
data continues on the next line. A value of 1 indicates that the data is
located in the associated file. When reading the additional file, filename,
the first section is a file comment. The second section starts with the string
"HPLogic_Additional_Data_File&\n", then the rest of this Integral Data
Object follows, i.e. Length and BytesPerLine and Raw Bytes.

• Length and BytesPerLine - Length is the number of samples (rows) of
data. BytesPerLine is the number of bytes for each sample or row.

• Raw Bytes - A raw section of bytes that is n bytes long. n = length *
bytesPerLine. The block of data can be viewed as an array of samples, with
each sample being bytesPerLine wide. This array is then accessed using a
zero based array index.
22

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
PagedIntegralData<ty
pe size> PagedIntegralData<type size> ::=

 Integral Data Type => "PagedIntegralData<type size>\n"
 Integral Data ID => "%d\n"
 (if ID has not already been processed)
 UseFile, Filename => "%d ‘%s‘\n"
 reserved => "%d %d\n"
 Length, BytesPerLine => "%u %u\n"
 Raw Bytes => n bytes

• Type and Size - Type is the sign-ness of the label data values, i.e. "signed"
or "unsigned". Size is the width in bits of the label. Valid bit widths are 8,
16, 32, 64.

• Integral Data ID - This is the Objects id. An id value of 0 indicated that
there is no data associated with this object. If the ID has not been seen
earlier in the file, the object information follows. If the id has been seen,
then the next object follows.

• UseFile and Filename - UseFile is a boolean that indicates whether to use a
file or not. The filename is a full path name. A value of 0 means that the
data continues on the next line. A value of 1 indicates that the data is
located in the associated file. When reading the additional file, filename,
the first section is a file comment. The second section starts with the string
"HPLogic_Additional_Data_File&\n", then the rest of this Inegral Data
Object follows, i.e. Length and BytesPerLine and Raw Bytes.

• Length and BytesPerLine - Length is the number of samples (rows) of
data. BytesPerLine is the number of bytes for each sample or row.
BytesPerLine will be either 1, 2, 4, 8.

• Raw Bytes - A raw section of bytes that is n bytes long. n = length *
bytesPerLine. The block of data can be viewed as an array of samples, with
each sample being bytesPerLine wide. This array is then accessed using a
zero based array index.

Strings
Strings ::=
 Integral Data Type => "StringData\n"
 Integral Data ID => "%d\n"
 (if ID has not already been processed)
 Length => "%d\n"
 String Block => "%d %s [%d %s]*"

• Length - Length is the number of strings contained in the data.

• String Block - The block of data can be viewed as two sections. First, a
value is read which represents the number of characters in the current
string, say x. The following x bytes are the actual string itself. Then
immediately following is a character count of the next string, and so on.
23

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
Label Extractor
<Label Extractor> ::=
 Bytes, Width, Inverted => "%u %u %d\n"
 Mask => "%x [%x]* \n"
 reserved => "%d\n%d\n"
 HaveReorder => "%d\n"
 Reorder => <Reorder>

• Bytes, Width, and Inverted - Bytes is the size of the mask. Width is the
number of bits that are set in the mask, also the number of bits of the
associated label. Inverted indicates if the label has negative polarity, i.e.
does the data need to be complemented after extraction.

• Mask - The mask is an array of bytes that specifies which bits of the
bitblock are needed for this label. The bytes of this mask corresponds to
the bytes of each sample. A bit set to a 1 in the mask indicates that the
corresponding bit in the sample should be used. The data is stored in big
Endian format, hence byte 0 is the most significant and continues till byte
n. For example, bytes=2, width=7:

 Byte 0 Byte 1
 111111
 bit 54321098 76543210
Mask: 10010011 00101010
Sample: 11100000 01111000
 -------- --------
Value: 1 0 00 1 1 0 => 1000110 => 0x46

If inverted is true or 1, then the value would become 0111001(0x39)

• HaveReorder - HaveReorder is a flag that indicates whether the bits need
to be reordered. Reordering occurs after the extraction takes place. If the
label bits are configured with bit reordering this field will have a non-zero
value, and the reorder object will follow. If haveReorder is zero, nothing
will follow.

• Reorder

Endian Flags => "Endian16: %d Endian32: %d Endian64: %d "
and Width => "Endian128: %d Width: %d\n"
Bit Order Map => ["%d %d\n" or " %s %s\n"](width times)

The reorder object describes the desired label bit ordering. The
appropriate Endian flags are set true when little endian is specified. Width
specifies the number of bits that are defined in this label, i.e. it should be
the same as the width specified in the parent Extract object. When a
custom bit ordering is specified, all the Endian flags will be false/0. If all
Endian flags are zero then there will be a bit order map following the flags.
The bit order map consists of two arrays that are width long, i.e. there is an
array element for each bit that is set in the mask. The first array is the map
from display bits to channel/bitblock bits, the second array is the map from
24

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
channel bits to display bits.The arrays are of type int if the width is less
than or equal to 32, otherwise the array is setup as strings to be processed
with any method that you have for handling greater than 32 bit integers.
The arrays are maps that map the bit(index of array) you are working with
to the bit position(value of array) that it should be moved to. For example,
a 4 bit label:

 Channel bit Display bit
 0 2
 1 0
 2 1
 3 3

 (index) Array1 Array2
 0 0010 0100
 1 0100 0001
 2 0001 0010
 3 1000 1000

Label Data

The label data can be one of several objects. The object is determined
by the first string of the label data object. Following the ’type’ string is
the raw binary data of the label. Then comes a bitset that describes the
attributes of this label. The currently defined label data objects are:

 "NoData"
 "States"
 "StateCount"
 "Glitch"
 "Analog"
 "TextLines"

• NoData - This is the label data object that is empty!

<NoData> ::=
 Label Data Type => "NoData\n"
 Label Attribute bitset
 => "%d [%d]* \n"

• States - This is the label data object that is most common. This is used to
represent sampled data of n-bit width. The <IntegralData> will contain the
actual sample data and is accessed with a zero based index.

<States> ::=
 Label Data Type => "States\n"
 <IntegralData>
 new line => "\n"
 Label Attributes bitset
 => "%d [%d]* \n"
25

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
• StateCount - This label data object is used to store state counts when
acquiring data with state tagging turned on.

<StateCount> ::=
 Label Data Type => "StateCount\n"
 <IntegralData>
 new line => "\n"
 Label Attributes bitset
 => "%d [%d]* \n"

• Glitch - This object is used for labels that have data that was acquired with
glitch mode turned on. The sample <IntegralData> contains the sample
data just like the State object. The glitch <IntegralData> contains the
glitch data. There is a one-to-one correspondence between the sample and
glitch data. When the glitch data is true, a 1 in any bit position, indicates
that a glitch occurred on the corresponding sample.

<Glitch> ::=
 Label Data Type => "Glitch\n"
 Sample <IntegralData>
 new line => "\n"
 Glitch <IntegralData>
 new line => "\n"
 Label Attributes bitset
 => "%d [%d]* \n"

• Analog - The object is for analog type data. The integral array contains the
digital quantization-levels of the sampled signal. The vertical header
contains the information to convert the digital data to voltage levels.

<Analog> ::=
 Label Data Type => "Analog\n"
 <IntegralData>
 new line => "\n"
 <VerticalHeader>
 Analog units => "%s\n"
 Label Attributes bitset
 => "%d [%d]* \n"

• TextLines - The object is for text type data. The integral array contains
text strings of data.

<Text> ::=
 Label Data Type => "TextLines\n"
 Lines <Strings>
 new line => "\n"
 Label Attributes bitset
 => "%d [%d]* \n"

Label Data Attributes
Bitset

The label data attributes is a bitset that represents the different
attributes this data has. At this time there are 22 label data attributes:

Bit# Description
 1 Label has width
 2 Label has length(samples)
26

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
 3 Label has Glitch Data
 4 Label has a Vertical Header
 5 Label Data has trigger
 6 Range
 7 Label Data has Statistical data
 8 Label Data has Integral data
 9 Label Data is in floating point
 10 Label Data is signed
 11 Label Data is unsigned
 12 Label Data is Periodic
 13 Label has symbols
 14 ValueItor
 15 GlitchItor
 16 SampledData
 17 VersusTime
 18 VersusFreq
 19 Analog
 20 Digital
 21 StateCounts
 22 TextLines

Label Entry

The Label Entry structure is the information associated with one data
label. This structure contains the label name, label data, label
attributes, and symbol information.

<Label Entry> ::=
 Label ID => "%d\n"
 (if Label ID has not already been processed)
 Label Name => "‘%s’\n"
 <Label Data>
 new line => "\n"
 Label Attribute Bits => "%d [%d]*\n"

• Label ID - There is a unique identifier for each label. When the same label
is used in multiple DataSets, the label data is written only once. If this
label's data has already been written to the file then the label name, label
data, and label attributes are not included in this record.

• Label Attribute Bitset - These attributes are used by various tools within
the instrument to identify certain labels. Most of these are for inverse
assembler. The only one that might be of interest is StateCount which is
set when doing state with state-tags type of acquisitions.

 Bit# Description
 0 TypeAddress
 1 TypeAddressB
 2 TypeAddressC
 3 TypeAddressD
 4 TypeData
 5 TypeDataB
 6 TypeDataC
 7 TypeDataD
 8 TypeStatus
 9 TypeStatusB
27

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
 10 TypeStatusC
 11 TypeStatusD
 12 TypeClock
 13 TypeClockPos
 14 TypeClockNeg
 15 TypeClockBoth
 16 TypeSampleEdge
 17 TypeSampleEdgePos
 18 TypeSampleEdgeNeg
 19 TypeSampleEdgeBoth
 20 TypeControl
 21 StateCount
 22 Sequencer

Vertical Header

The vertical header is used to describe information about a signal that
goes beyond just digital data. At this time, the only specific application
is to describe the signal from an scope. As with other polymorphic
objects, this object supports several types of objects which is specified
by the first string/line. The possible types at this time are:

"DefaultOrdinateHeader"

"ScopeHeader"

• DefaultOrdinateHeader

<DefaultOrdinateHeader> ::=
 Header Type => "DefaultOrdinateHeader\n"

• ScopeHeader

<ScopeHeader> ::=
 Header Type => "ScopeHeader\n"
 YIncrement, YOrigin, YReference, NumBits
 => "%f %f %d %d\n"

• YOrigin - is the voltage value at center screen.

• YIncrement - the voltage difference between consecutive data values.

• YReference - the value that specifies the data value at center screen,
where YOrigin occurs.

• NumBits - the number of bits for the width of the scope data.
28

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
Abscissa Data Type (x-axis information)

The Abscissa Data object contains the time and/or state information
that describes how the data "flows" in this data set. The state portion of
this object describes the number of samples and where the trigger is
located within the samples. If there is time associated with this data
set, then the time portion describes any timing information. This is a
polymorphic object and as such, the first line determines which object
is actually used. The current possible objects are:

• AbscissaData - The Abscissa Data object is a base object that describes the
number of samples and the trigger position for all of the labels
(LabelEntry) contained in this data set. The abscissa attributes give the
characteristics of the abscissa data.

<AbscissaDataType> ::=
 Abscissa Data Type => "AbscissaData\n"
 Number of Samples, Trigger Position
 => "%d %d\n"
 Abscissa Attribute bitset
 => "%d [%d]* \n"

• Periodic - The Periodic object is used when the timing information is based
on periodic sampling.

<AbscissaDataType> ::=
 Abscissa Data Type => "Periodic\n"
 Number of Samples, Trigger Position
 => "%d %d\n"
 Origin, Increment => "%s %s\n"
 Abscissa Attribute bitset
 => "%d %d\n"

• Origin is the time of the first sample.

• Increment is the time between samples.

These two times are defined in terms of strings because these values are
normally kept as 64-bit signed integers. A value of 1 represents 1 pico-
second.

• TimeTags / PagedTimeTags - The TimeTags object is used for any timing
information that is not periodic.

<AbscissaDataType> ::=
 Abscissa Data Type => "TimeTags\n"
 Number of Samples, Trigger Position
 => "%d %d\n"
 Time Values => IntegralArray&<signed64>
 Abscissa Attribute bitset => "%d [%d]* \n"
29

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
The PagedTimeTags object is also used for any timing information, but it
has one additional data element, Time Values Flag. If this flag is zero, then
the Time Values element is skipped!

<AbscissaDataType> ::=
 Abscissa Data Type => "PagedTimeTags\n"
 Number of Samples, Trigger Position
 => "%d %d\n"
 Time Values Flag => "%d\n"
 (if TimeValuesFlag is non-zero, then Time Values)
 Time Values => IntegralArray<signed64>
 Abscissa Attribute bitset => "%d [%d]* \n"

• Time Values - The time is kept in 64 bit signed integers. These integers
represent the number of pico-seconds. The time value is an array of
times and is accessed with a zero based index. There is a one-to-one
correspondence between the sample array and this time value array.

Abscissa Attributes
bitset Bit# Description

 1 Abscissa has Length
 2 Abscissa has HorizontalHeader
 3 Abscissa has TimeCorrelation
 4 Abscissa has TriggerRow
 5 Abscissa is TimeTag
 6 Abscissa is StateTag
 7 Abscissa is SamplePeriod
 8 Range
 9 Abscissa is Periodic
 10 Abscissa has TimeItor
 11 Abscissa has StateNumberItor
 12 Abscissa consists of SampledData

Time Correlation Info

The Time Correlation info object describes how this data set is time
correlated to other data sets.

<Time Correlation Info>::=
 Correlation Type => "TimeCorrelationInfo\n"
 TimeCorrelationType, Source, CorrelationTime
 => "%d %d %s\n"

• TimeCorrelationType - The type of time correlation for this data set.
Correlation can be of 3 different types. No time correlation means there is
no time correlation information for this data set. Conditional time
correlation means that the data set can be time correlated under certain
circumstances with data from another machine. Unconditional time
correlation means that the data is unconditionally correlated with another
data set as it is from the same machine.
30

Chapter 1: Using the File Out Tool
Fast Binary Data File Format
0 No Time Correlation
1 Conditional Time Correlation
2 Unconditional Time Correlation

• Source - The source is the machine id from which the data set was
obtained.

• CorrelationTime - The correlation time is a zero-relative time based on the
data set that is considered the trigger data set. If the time is non-zero, this
is the amount of time offset to use to correlate this data from the trigger
data's time.

State Correlation Info

The State Correlation info object describes how this data set is state
correlated to other data sets.

<State Correlation Info>::=
 Correlation Type => "StateCorrelationInfo\n"
 Offset => "%s\n"

• Offset - The correlation offset is a zero-relative number of states based on
the data set that is considered the `trigger' data set. This value represents
how many states to offset from the `trigger' data set to correlate the data.
(Note: this value may be invalid. It is recommended that no dependence is
placed on this field.)
31

Chapter 1: Using the File Out Tool
Connecting Tools Together
Connecting Tools Together

If you drag and drop tools into open space in the workspace, you must
create a data path between the tools by connecting their output and
input ports.

To Connect Output
and Input Ports

1. Point to the tool output port.

2. Press and hold, then move the cursor over to a tool input port, then
release.
You should now have a line, representing a data path, drawn between tool
data ports.
32

Chapter 1: Using the File Out Tool
Help - How to Navigate Quickly
Help - How to Navigate Quickly

1. Place mouse cursor anywhere in a help window.

2. Press the right mouse button.

3. Select desired destination.

You can also access all navigation and search commands from the help
window menu bar.
33

Chapter 1: Using the File Out Tool
Help - System Overview
Help - System Overview

The help system is divided into System Help, and Tool Help. All help is
designed to be task oriented and specific to the window where tasks
are performed.

Links, in most cases, are confined to topics in the specific window
where help was requested. However, some links do go up to system-
level topics from specific tool windows. When this occurrs, a second
help window will appear. Since the definition of future tools is hard to
link to, there are no links going from the system level down to specific
tools.

System Help The system help is accessed through the Help field in the menu bar of
the main system window. It offers help on system-level topics and
operations.

Tool Help As you add new software and hardware tools to the system, the tool
specific help is added. Tool specific help is accessed through the Help
field in the menu bar of the specific tool windows.

Using Help In addition to system and tool help, there is help on help called Using

Help. Using Help shows you how to navigate and search the help
systems and to print help topics. Using Help is accessed through the
Help field in all windows.
34

Glossary
absolute Denotes the time period
or count of states between a captured
state and the trigger state. An
absolute count of -10 indicates the
state was captured ten states before
the trigger state was captured.

acquisition Denotes one complete
cycle of data gathering by a
measurement module. For example,
if you are using an analyzer with
128K memory depth, one complete
acquisition will capture and store
128K states in acquisition memory.

analysis probe A probe connected
to a microprocessor or standard bus
in the device under test. An analysis
probe provides an interface between
the signals of the microprocessor or
standard bus and the inputs of the
logic analyzer. Also called a
preprocessor.

analyzer 1 In a logic analyzer with
two machines, refers to the machine
that is on by default. The default
name is Analyzer<N>, where N is
the slot letter.

analyzer 2 In a logic analyzer with
two machines, refers to the machine
that is off by default. The default
name is Analyzer<N2>, where N is
the slot letter.

arming An instrument tool must be

armed before it can search for its
trigger condition. Typically,
instruments are armed immediately
when Run or Group Run is selected.
You can set up one instrument to arm
another using the Intermodule

Window. In these setups, the second
instrument cannot search for its
trigger condition until it receives the
arming signal from the first
instrument. In some analyzer
instruments, you can set up one
analyzer machine to arm the other
analyzer machine in the Trigger

Window.

asterisk (*) See edge terms,
glitch, and labels.

bits Bits represent the physical logic
analyzer channels. A bit is a channel
that has or can be assigned to a label.
A bit is also a position in a label.

card This refers to a single
instrument intended for use in the
Agilent Technologies 16600A-series
or 16700A/B-series mainframes. One
card fills one slot in the mainframe. A
module may comprise a single card or
multiple cards cabled together.

channel The entire signal path from
the probe tip, through the cable and
module, up to the label grouping.

click When using a mouse as the
35

Glossary
pointing device, to click an item,
position the cursor over the item.
Then quickly press and release the
left mouse button.

clock channel A logic analyzer
channel that can be used to carry the
clock signal. When it is not needed
for clock signals, it can be used as a
data channel, except in the Agilent
Technologies 16517A.

context record A context record is
a small segment of analyzer memory
that stores an event of interest along
with the states that immediately
preceded it and the states that
immediately followed it.

context store If your analyzer can
perform context store
measurements, you will see a button
labeled Context Store under the
Trigger tab. Typical context store
measurements are used to capture
writes to a variable or calls to a
subroutine, along with the activity
preceding and following the events. A
context store measurement divides
analyzer memory into a series of
context records. If you have a 64K
analyzer memory and select a 16-
state context, the analyzer memory is
divided into 4K 16-state context
records. If you have a 64K analyzer
memory and select a 64-state
context, the analyzer memory will be
36
divided into 1K 64-state records.

count The count function records
periods of time or numbers of state
transactions between states stored in
memory. You can set up the analyzer
count function to count occurrences
of a selected event during the trace,
such as counting how many times a
variable is read between each of the
writes to the variable. The analyzer
can also be set up to count elapsed
time, such as counting the time spent
executing within a particular function
during a run of your target program.

cross triggering Using intermodule
capabilities to have measurement
modules trigger each other. For
example, you can have an external
instrument arm a logic analyzer,
which subsequently triggers an
oscilloscope when it finds the trigger
state.

data channel A channel that
carries data. Data channels cannot be
used to clock logic analyzers.

data field A data field in the pattern
generator is the data value associated
with a single label within a particular
data vector.

data set A data set is made up of all
labels and data stored in memory of
any single analyzer machine or

Glossary
instrument tool. Multiple data sets
can be displayed together when
sourced into a single display tool. The
Filter tool is used to pass on partial
data sets to analysis or display tools.

debug mode See monitor.

delay The delay function sets the
horizontal position of the waveform
on the screen for the oscilloscope and
timing analyzer. Delay time is
measured from the trigger point in
seconds or states.

demo mode An emulation control
session which is not connected to a
real target system. All windows can
be viewed, but the data displayed is
simulated. To start demo mode,
select Start User Session from the
Emulation Control Interface and
enter the demo name in the
Processor Probe LAN Name field.
Select the Help button in the Start

User Session window for details.

deskewing To cancel or nullify the
effects of differences between two
different internal delay paths for a
signal. Deskewing is normally done
by routing a single test signal to the
inputs of two different modules, then
adjusting the Intermodule Skew so
that both modules recognize the
signal at the same time.

device under test The system
under test, which contains the
circuitry you are probing. Also known
as a target system.

don’t care For terms, a "don’t care"
means that the state of the signal
(high or low) is not relevant to the
measurement. The analyzer ignores
the state of this signal when
determining whether a match occurs
on an input label. "Don’t care" signals
are still sampled and their values can
be displayed with the rest of the data.
Don’t cares are represented by the X
character in numeric values and the
dot (.) in timing edge specifications.

dot (.) See edge terms, glitch,
labels, and don’t care.

double-click When using a mouse
as the pointing device, to double-click
an item, position the cursor over the
item, and then quickly press and
release the left mouse button twice.

drag and drop Using a Mouse:
Position the cursor over the item, and
then press and hold the left mouse

button. While holding the left mouse
button down, move the mouse to
drag the item to a new location. When
the item is positioned where you
want it, release the mouse button.
37

Glossary
Using the Touchscreen:
Position your finger over the item,
then press and hold finger to the
screen. While holding the finger
down, slide the finger along the
screen dragging the item to a new
location. When the item is positioned
where you want it, release your
finger.

edge mode In an oscilloscope, this
is the trigger mode that causes a
trigger based on a single channel
edge, either rising or falling.

edge terms Logic analyzer trigger
resources that allow detection of
transitions on a signal. An edge term
can be set to detect a rising edge,
falling edge, or either edge. Some
logic analyzers can also detect no
edge or a glitch on an input signal.
Edges are specified by selecting
arrows. The dot (.) ignores the bit.
The asterisk (*) specifies a glitch on
the bit.

emulation module A module
within the logic analysis system
mainframe that provides an
emulation connection to the debug
port of a microprocessor. An E5901A
emulation module is used with a
target interface module (TIM) or an
analysis probe. An E5901B emulation
module is used with an E5900A
emulation probe.
38
emulation probe The stand-alone
equivalent of an emulation module.
Most of the tasks which can be
performed using an emulation
module can also be performed using
an emulation probe connected to
your logic analysis system via a LAN.

emulator An emulation module or
an emulation probe.

Ethernet address See link-level

address.

events Events are the things you
are looking for in your target system.
In the logic analyzer interface, they
take a single line. Examples of events
are Label1 = XX and Timer 1 > 400

ns.

filter expression The filter
expression is the logical OR
combination of all of the filter terms.
States in your data that match the
filter expression can be filtered out or
passed through the Pattern Filter.

filter term A variable that you
define in order to specify which
states to filter out or pass through.
Filter terms are logically OR’ed
together to create the filter
expression.

Format The selections under the
logic analyzer Format tab tell the

Glossary
logic analyzer what data you want to
collect, such as which channels
represent buses (labels) and what
logic threshold your signals use.

frame The Agilent Technologies
16600A-series or 16700A/B-series
logic analysis system mainframe. See
also logic analysis system.

gateway address An IP address
entered in integer dot notation. The
default gateway address is 0.0.0.0,
which allows all connections on the
local network or subnet. If
connections are to be made across
networks or subnets, this address
must be set to the address of the
gateway machine.

glitch A glitch occurs when two or
more transitions cross the logic
threshold between consecutive
timing analyzer samples. You can
specify glitch detection by choosing
the asterisk (*) for edge terms under
the timing analyzer Trigger tab.

grouped event A grouped event is
a list of events that you have
grouped, and optionally named. It can
be reused in other trigger sequence
levels. Only available in Agilent
Technologies 16715A, 16716A, and
16717A logic analyzers.

held value A value that is held until

the next sample. A held value can
exist in multiple data sets.

immediate mode In an
oscilloscope, the trigger mode that
does not require a specific trigger
condition such as an edge or a
pattern. Use immediate mode when
the oscilloscope is armed by another
instrument.

interconnect cable Short name for
module/probe interconnect cable.

intermodule bus The intermodule
bus (IMB) is a bus in the frame that
allows the measurement modules to
communicate with each other. Using
the IMB, you can set up one
instrument to arm another. Data
acquired by instruments using the
IMB is time-correlated.

intermodule Intermodule is a term
used when multiple instrument tools
are connected together for the
purpose of one instrument arming
another. In such a configuration, an
arming tree is developed and the
group run function is designated to
start all instrument tools. Multiple
instrument configurations are done in
the Intermodule window.

internet address Also called
Internet Protocol address or IP
address. A 32-bit network address. It
39

Glossary
is usually represented as decimal
numbers separated by periods; for
example, 192.35.12.6. Ask your LAN
administrator if you need an internet
address.

labels Labels are used to group and
identify logic analyzer channels. A
label consists of a name and an
associated bit or group of bits. Labels
are created in the Format tab.

line numbers A line number (Line
#s) is a special use of symbols. Line
numbers represent lines in your
source file, typically lines that have
no unique symbols defined to
represent them.

link-level address Also referred to
as the Ethernet address, this is the
unique address of the LAN interface.
This value is set at the factory and
cannot be changed. The link-level
address of a particular piece of
equipment is often printed on a label
above the LAN connector. An
example of a link-level address in
hexadecimal: 0800090012AB.

local session A local session is
when you run the logic analysis
system using the local display
connected to the product hardware.

logic analysis system The Agilent
Technologies 16600A-series or
40
16700A/B-series mainframes, and all
tools designed to work with it.
Usually used to mean the specific
system and tools you are working
with right now.

machine Some logic analyzers allow
you to set up two measurements at
the same time. Each measurement is
handled by a different machine. This
is represented in the Workspace
window by two icons, differentiated
by a 1 and a 2 in the upper right-hand
corner of the icon. Logic analyzer
resources such as pods and trigger
terms cannot be shared by the
machines.

markers Markers are the green and
yellow lines in the display that are
labeled x, o, G1, and G2. Use them to
measure time intervals or sample
intervals. Markers are assigned to
patterns in order to find patterns or
track sequences of states in the data.
The x and o markers are local to the
immediate display, while G1 and G2
are global between time correlated
displays.

master card In a module, the
master card controls the data
acquisition or output. The logic
analysis system references the
module by the slot in which the
master card is plugged. For example,
a 5-card Agilent Technologies 16555D

Glossary
would be referred to as Slot C:

machine because the master card is
in slot C of the mainframe. The other
cards of the module are called
expansion cards.

menu bar The menu bar is located
at the top of all windows. Use it to
select File operations, tool or system
Options, and tool or system level
Help.

message bar The message bar
displays mouse button functions for
the window area or field directly
beneath the mouse cursor. Use the
mouse and message bar together to
prompt yourself to functions and
shortcuts.

module/probe interconnect cable

The module/probe interconnect cable
connects an E5901B emulation
module to an E5900B emulation
probe. It provides power and a serial
connection. A LAN connection is also
required to use the emulation probe.

module An instrument that uses a
single timebase in its operation.
Modules can have from one to five
cards functioning as a single
instrument. When a module has more
than one card, system window will
show the instrument icon in the slot
of the master card.

monitor When using the Emulation
Control Interface, running the
monitor means the processor is in
debug mode (that is, executing the
debug exception) instead of
executing the user program.

panning The action of moving the
waveform along the timebase by
varying the delay value in the Delay
field. This action allows you to
control the portion of acquisition
memory that will be displayed on the
screen.

pattern mode In an oscilloscope,
the trigger mode that allows you to
set the oscilloscope to trigger on a
specified combination of input signal
levels.

pattern terms Logic analyzer
resources that represent single states
to be found on labeled sets of bits; for
example, an address on the address
bus or a status on the status lines.

period (.) See edge terms, glitch,
labels, and don’t care.

pod pair A group of two pods
containing 16 channels each, used to
physically connect data and clock
signals from the unit under test to the
analyzer. Pods are assigned by pairs
in the analyzer interface. The number
of pod pairs avalaible is determined
41

Glossary
by the channel width of the
instrument.

pod See pod pair

point To point to an item, move the
mouse cursor over the item, or
position your finger over the item.

preprocessor See analysis probe.

primary branch The primary
branch is indicated in the Trigger

sequence step dialog box as either
the Then find or Trigger on
selection. The destination of the
primary branch is always the next
state in the sequence, except for the
Agilent Technologies 16517A. The
primary branch has an optional
occurrence count field that can be
used to count a number of
occurrences of the branch condition.
See also secondary branch.

probe A device to connect the
various instruments of the logic
analysis system to the target system.
There are many types of probes and
the one you should use depends on
the instrument and your data
requirements. As a verb, "to probe"
means to attach a probe to the target
system.

processor probe See emulation

probe.
42
range terms Logic analyzer
resources that represent ranges of
values to be found on labeled sets of
bits. For example, range terms could
identify a range of addresses to be
found on the address bus or a range
of data values to be found on the data
bus. In the trigger sequence, range
terms are considered to be true when
any value within the range occurs.

relative Denotes time period or
count of states between the current
state and the previous state.

remote display A remote display is
a display other than the one
connected to the product hardware.
Remote displays must be identified to
the network through an address
location.

remote session A remote session is
when you run the logic analyzer using
a display that is located away from
the product hardware.

right-click When using a mouse for
a pointing device, to right-click an
item, position the cursor over the
item, and then quickly press and
release the right mouse button.

sample A data sample is a portion of
a data set, sometimes just one point.
When an instrument samples the
target system, it is taking a single

Glossary
measurement as part of its data
acquisition cycle.

Sampling Use the selections under
the logic analyzer Sampling tab to tell
the logic analyzer how you want to
make measurements, such as State
vs. Timing.

secondary branch The secondary
branch is indicated in the Trigger

sequence step dialog box as the Else

on selection. The destination of the
secondary branch can be specified as
any other active sequence state. See
also primary branch.

session A session begins when you
start a local session or remote

session from the session manager,
and ends when you select Exit from
the main window. Exiting a session
returns all tools to their initial
configurations.

skew Skew is the difference in
channel delays between
measurement channels. Typically,
skew between modules is caused by
differences in designs of
measurement channels, and
differences in characteristics of the
electronic components within those
channels. You should adjust
measurement modules to eliminate
as much skew as possible so that it
does not affect the accuracy of your

measurements.

state measurement In a state
measurement, the logic analyzer is
clocked by a signal from the system
under test. Each time the clock signal
becomes valid, the analyzer samples
data from the system under test.
Since the analyzer is clocked by the
system, state measurements are
synchronous with the test system.

store qualification Store
qualification is only available in a
state measurement, not timing

measurements. Store qualification
allows you to specify the type of
information (all samples, no samples,
or selected states) to be stored in
memory. Use store qualification to
prevent memory from being filled
with unwanted activity such as no-
ops or wait-loops. To set up store
qualification, use the While storing
field in a logic analyzer trigger
sequence dialog.

subnet mask A subnet mask blocks
out part of an IP address so that the
networking software can determine
whether the destination host is on a
local or remote network. It is usually
represented as decimal numbers
separated by periods; for example,
255.255.255.0. Ask your LAN
administrator if you need a the
subnet mask for your network.
43

Glossary
symbols Symbols represent
patterns and ranges of values found
on labeled sets of bits. Two kinds of
symbols are available:

• Object file symbols - Symbols
from your source code, and
symbols generated by your
compiler. Object file symbols may
represent global variables,
functions, labels, and source line
numbers.

• User-defined symbols - Symbols
you create.

Symbols can be used as pattern and
range terms for:

• Searches in the listing display.

• Triggering in logic analyzers and
in the source correlation trigger
setup.

• Qualifying data in the filter tool
and system performance analysis
tool set.

system administrator The system
administrator is a person who
manages your system, taking care of
such tasks as adding peripheral
devices, adding new users, and doing
system backup. In general, the
system administrator is the person
you go to with questions about
implementing your software.
44
target system The system under
test, which contains the
microprocessor you are probing.

terms Terms are variables that can
be used in trigger sequences. A term
can be a single value on a label or set
of labels, any value within a range of
values on a label or set of labels, or a
glitch or edge transition on bits
within a label or set of labels.

TIM A TIM (Target Interface
Module) makes connections between
the cable from the emulation module
or emulation probe and the cable to
the debug port on the system under
test.

time-correlated Time correlated
measurements are measurements
involving more than one instrument
in which all instruments have a
common time or trigger reference.

timer terms Logic analyzer
resources that are used to measure
the time the trigger sequence
remains within one sequence step, or
a set of sequence steps. Timers can
be used to detect when a condition
lasts too long or not long enough.
They can be used to measure pulse
duration, or duration of a wait loop. A
single timer term can be used to
delay trigger until a period of time
after detection of a significant event.

Glossary
timing measurement In a timing
measurement, the logic analyzer
samples data at regular intervals
according to a clock signal internal to
the timing analyzer. Since the
analyzer is clocked by a signal that is
not related to the system under test,
timing measurements capture traces
of electrical activity over time. These
measurements are asynchronous
with the test system.

tool icon Tool icons that appear in
the workspace are representations of
the hardware and software tools
selected from the toolbox. If they are
placed directly over a current
measurement, the tools automatically
connect to that measurement. If they
are placed on an open area of the
main window, you must connect them
to a measurement using the mouse.

toolbox The Toolbox is located on
the left side of the main window. It is
used to display the available
hardware and software tools. As you
add new tools to your system, their
icons will appear in the Toolbox.

tools A tool is a stand-alone piece of
functionality. A tool can be an
instrument that acquires data, a
display for viewing data, or a post-
processing analysis helper. Tools are
represented as icons in the main
window of the interface.

trace See acquisition.

trigger sequence A trigger
sequence is a sequence of events that
you specify. The logic analyzer
compares this sequence with the
samples it is collecting to determine
when to trigger.

trigger specification A trigger
specification is a set of conditions
that must be true before the
instrument triggers.

trigger Trigger is an event that
occurs immediately after the
instrument recognizes a match
between the incoming data and the
trigger specification. Once trigger
occurs, the instrument completes its
acquisition, including any store
qualification that may be specified.

workspace The workspace is the
large area under the message bar and
to the right of the toolbox. The
workspace is where you place the
different instrument, display, and
analysis tools. Once in the workspace,
the tool icons graphically represent a
complete picture of the
measurements.

zooming In the oscilloscope or
timing analyzer, to expand and
contract the waveform along the time
base by varying the value in the s/Div
45

Glossary
field. This action allows you to select
specific portions of a particular
waveform in acquisition memory that
will be displayed on the screen. You
can view any portion of the waveform
record in acquisition memory.
46

Index
A

ASCII data format, 12
automatic file sequencing, 10

C

connecting tool input and output
ports, 32

D

data file, 7
data, saving in File Out, 9

F

fast binary data format, 12
fast binary data, details, 16
fast binary file format, details, 16
file formats, File Out tool, 12
File Out data, saving, 7
file out tool, 2
File Out tool, overview, 6
format types, File Out tool, 12
FOT, 12

H

hardcopy, 14
help, 33, 34
help, how to use, 34

I

Internal data format, 12

O

options, ascii, 15
output file format, 15

P

printer, 14
printing windows, configurations,

14

S

save options, File Out, 10
saving configuration files, File Out,

12

T

tools, connecting, 32

W

window, printing, 14
workspace, 14
47

Index
48

	Utilities: File Out Tool
	Using the File Out Tool
	Contents
	Using the File Out Tool
	Overview of File Out Tool
	Saving a Single Data File
	Saving Multiple Data Files
	Automatic Sequencing
	File Sequence Example
	ASCII Data File Example

	Loading & Saving File Out Configurations
	File Out Data Formats

	Printing the File Out Window
	Setting the ASCII Options
	Fast Binary Data File Format
	DataGroup
	DataSet
	IntegralData
	Label Data
	Label Entry
	Vertical Header
	Abscissa Data Type (x-axis information)
	Time Correlation Info
	State Correlation Info

	Connecting Tools Together
	Help - How to Navigate Quickly
	Help - System Overview

	Glossary
	Index

